Assessment of the association between increasing membrane pore size and endotoxin permeability using a novel experimental dialysis simulation set-up
نویسندگان
چکیده
BACKGROUND Membranes with increasing pore size are introduced to enhance removal of large uremic toxins with regular hemodialysis. These membranes might theoretically have higher permeability for bacterial degradation products. In this paper, permeability for bacterial degradation products of membranes of comparable composition with different pore size was investigated with a new in vitro set-up that represents clinical flow and pressure conditions. METHODS Dialysis was simulated with an AK200 machine using a low-flux, high-flux, medium cut-off (MCO) or high cut-off (HCO) device (n = 6/type). A polyvinylpyrrolidone-solution (PVP) was recirculated at blood side. At dialysate side, a challenge solution containing a filtrated lysate of two water-borne bacteria (Pseudomonas aeruginosa and Pelomononas saccharophila) was infused in the dialysate flow (endotoxin ≥ 4EU/ml). Blood and dialysate flow were set at 400 and 500 ml/min for 60 min. PVP was sampled before (PVPpre) and after (PVPpost) the experiment and dialysate after 5 and 55 min. Limulus Amebocyte Lysate (LAL) test was performed. Additionally, samples were incubated with a THP-1 cell line (24 h) and IL-1β levels were measured evaluating biological activity. RESULTS The LAL-assay confirmed presence of 9.5 ± 7.4 EU/ml at dialysate side. For none of the devices the LAL activity in PVPpre vs. PVPpost was significantly different. Although more blood side PVP solutions had a detectable amount of endotoxin using a highly sensitive LAL assay in the more open vs traditional membranes, the permeability for endotoxins of the 4 tested dialysis membranes was not significantly different but the number of repeats is small. None of the PVP solutions induced IL-1β in the THP-1 assay. CONCLUSIONS A realisitic in vitro dialysis was developed to assess membrane translocation of bacterial products. LAL activity on the blood side after endotoxin exposure did not change for all membranes. Also, none of the PVPpost solutions induced IL-1β in the THP-1 bio-assay.
منابع مشابه
Synthesis and Experimental-Modelling Evaluation of Nanoparticles Movements by Novel Surfactant on Water Injection: An Approach on Mechanical Formation Damage Control and Pore Size Distribution
Water injection is used as a widespread IOR/EOR method and promising formation damages (especially mechanical ones) is a crucial challenge in the near-wellbore of injection wells. The magnesium oxide (MgO) NanoParticles (NPs) considered in the article underwater flooding experiment tests to monitor the promising mechanical formation damage (size exclusion) in lab mechanistic scale include m...
متن کاملApplication of Functionalized Graphene Oxide Nanosheet in Gas Separation
Graphene oxide nanosheet (GONS) can be a suitable membrane for gas separation with high permeability and selectivity. Separation of N2/CO2 using functionalized GONS was investigated by molecular dynamics simulations. The simulated systems were comprised of two types of GONS with a pore in their center, N2 and CO2 molecules. The selectivity and ...
متن کاملPore Model Prediction of CH4 Separation from HS Using PTMSP and γ -Alumina Membranes
The main aim of this work is to develop a model of hydrogen sulfide (H2S) separation from natural gas by using membrane separation technology. The model is developed by incorporating three diffusion mechanisms which are Knudsen, viscous and surface diffusion towards membrane selectivity and permeability. The findings from the simulation result shows that the permeability of the gas is dependent...
متن کاملDialyzer membranes as determinants of the adequacy of dialysis.
Hemodialysis membranes have undergone a gradual but substantial evolution over the past few decades. Classification of modern dialyzer membranes by chemical composition bears little relationship to their functional characteristics. The fundamental properties that determine the capacity of the membrane to remove solutes and fluids are its surface area, thickness, pore size, pore density, and pot...
متن کاملAbsolute Permeability Calculation by Direct Numerical Simulation in Porous Media
Simulating fluid flow at micro level is an ongoing problem. Simplified macroscopic flow models like Darcy’s law is unable to estimate fluid dynamic properties of porous media. The digital sample reconstruction by high resolution X-ray computed tomography scanning and fluid-dynamics simulation, together with the increasing power of super-computers, allow to carry out pore-scale simulations throu...
متن کامل